Pilocytic Astrocytoma

Last Updated: May 4, 2021

Figure 1: This posterior fossa PA has a large cyst with an adjacent mass (nodule). (Left) Axial image showing that this patient's cystic tumor is compressing and deviating the fourth ventricle, resulting in hydrocephalus. (Right) Sagittal postcontrast T1-weighted image showing the sometimes very heterogeneous enhancement apparent in the solid portion of the lesion that belies its underlying low-grade histology.

Figure 2: Axial (left) and sagittal (right) postcontrast T1-weighted images demonstrate a cystic lesion with a brightly enhancing mural nodule/mass. This appearance is very typical for juvenile PAs but must be distinguished from the similar-appearing hemangioblastoma when in the posterior fossa, particularly when in older children and young adults.

BASIC DESCRIPTION

- Slow-growing, well-circumscribed tumor arising from astrocytic precursors
- Most common pediatric primary intracranial neoplasm

PATHOLOGY

- WHO grade I
- Biphasic pattern of astrocytes (Rosenthal fibers and multipolar cells)
- Syndromic or sporadic
 - Optic nerve/chiasm pilocytic astrocytomas (PAs) associated with neurofibromatosis type 1

CLINICAL FEATURES

Patients aged 5 to 15 years most common

- No gender predilection
- Overall good prognosis
 - 10-year survival, >90%
- Common presenting signs/symptoms
 - Headaches, nausea, vomiting, ataxia, seizures, visual loss if optic pathways involved

Treatment

- Cerebellar: tumor resection; adjuvant chemoradiation is rarely recommended, as residual tumors rarely grow and may even regress spontaneously
- Optic pathway: slow-growing tumors often monitored without treatment; tumor debulking, radiation, and/or chemotherapy for symptomatic or rapidly enlarging tumors

IMAGING

- General
 - Usually well-circumscribed cerebellar hemispheric lesion but can also be supratentorial
 - Mass effect, effacement of fourth ventricle common
 - May arise from optic nerve, optic chiasm, or hypothalamus
 - Minimal surrounding edema
 - Most often cystic mass with mural nodule but can be completely solid, particularly in older patients

CT

- Mixed solid-cystic mass with minimal surrounding edema
 - Solid component isodense to hypodense to gray matter
- Can have calcification; hemorrhage uncommon
- Strong mural nodular enhancement on contrast-enhanced CT images
- Nonenhancing cystic component, but may show cyst wall enhancement
 - Contrast accumulation in cystic component on delayed images

- MRI
 - o T1WI
 - Cyst: isointense to hyperintense to cerebrospinal fluid but hypointense to parenchyma
 - Solid: isointense to hypointense to gray matter
 - o T2WI
 - Cyst: hyperintense to brain parenchyma
 - Solid: usually hyperintense to parenchyma
 - Hyperintense optic pathway lesions
 - FLAIR: hyperintense solid and cystic components
 - DWI: typically no diffusion restriction
 - T1WI+C: enhancing solid component ± cyst wall enhancement; can show optic pathway enhancement
 - MRS: aggressive features; elevated choline and lactate, decreased NAA

IMAGING RECOMMENDATIONS

MRI with contrast

For more information, please see the corresponding chapter in Radiopaedia.

Contributor: Rachel Seltman, MD

DOI: https://doi.org/10.18791/nsatlas.v1.03.01.31

REFERENCES

Collins VP, Jones DTW, Giannini C. Pilocytic astrocytoma: pathology, molecular mechanisms and markers. *Acta Neuropathol* 2015;129:775–788. doi.org/10.1007/s00401-015-1410-7.

Fernandez C, Figarella-Branger D, Girard N, et al. Pilocytic astrocytomas in children: prognostic factors—a retrospective study of 80 cases.

- *Neurosurgery* 2003;53:544–553, discussion 554–555. doi.org/10.1227/01.NEU.0000079330.01541.6E.
- Fisher PG, Tihan T, Goldthwaite PT, et al. Outcome analysis of childhood low-grade astrocytomas. *Pediatr Blood Cancer* 2008;51:245–250. doi.org/10.1002/pbc.21563.
- Hwang JH, Egnaczyk GF, Ballard E, et al. Proton MR spectroscopic characteristics of pediatric pilocytic astrocytomas. *AJNR Am J Neuroradiol* 1998;19:535–540.
- Koeller KK, Rushing EJ. From the archives of the AFIP: pilocytic astrocytoma: radiologic-pathologic correlation. *Radiographics* 2004;24:1693–1708. doi.org/10.1148/rg.246045146.
- Lee YY, Van Tassel P, Bruner JM, et al. Juvenile pilocytic astrocytomas: CT and MR characteristics. *AJR Am J Roentgenol* 1989;152:1263–1270. doi.org/10.2214/ajr.152.6.1263.
- Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. *Acta Neuropathol* 2007;114:547. doi.org/10.1007/s00401-007-0243-4.
- Osborn AG, Salzman KL, Jhaveri MD. *Diagnostic Imaging* (3rd ed). Elsevier, Philadelphia, PA; 2016.