Cortical Dysplasia

Last Updated: July 5, 2021

Figure 1: In this case, there is T1-isointense (top left), FLAIR-hyperintense (top right and bottom), nonenhancing signal within the left supramarginal and angular gyri subcortical white matter with overlying

cortical thickening. Although cortical dysplasia can be a difficult diagnosis to make, it most commonly is perisylvian in location, as is seen in this case.

Figure 2: Although the Blumke classification is a pathologic classification, imaging occasionally will have features that are characteristic of type II cortical dysplasia (Taylor type). Notice the cortical and subcortical FLAIR-hyperintense and TI-hypointense signal with associated mild cortical expansion and a thin linear focus of FLAIR-hyperintense signal radiating toward the ventricle. This radiating signal is referred to as the

transmantle sign.

Description

Often associated with refractory epilepsy

Pathology

 Histologically classified based on giant dysmorphic neurons with or without balloon cells

Clinical Features

- Symptoms
 - Refractory epilepsy
- Age and gender
 - No gender predilection; usually manifests in the first 2 decades of life with seizures

Imaging

- General
 - Thickening, blurring, and sometimes hyperintensity of the cortex
 - Abnormal signal may be seen to extend from the cortex to the ventricle with tapering as it approaches the lateral ventricle
- Modality specific
 - o CT
 - Usually normal
 - o MRI
 - T1WI
 - Slightly hypointense
 - T2WI/FLAIR
 - Homogeneous T2-hyperintense comet-tail
 - Contrast
 - Typically nonenhancing
- Imaging recommendations

MRI with contrast

Mimic

 Cortical dysplasia can mimic low-grade glioma, depending on its location, size, and configuration. Usually a triangular appearance with the apex toward the ventricle is more characteristic of transmantle dysplasia. The cortical thickening and blurring of dysplasia can be much more difficult to distinguish from low-grade tumor such as ganglioglioma.

For more information, please see the corresponding chapter in Radiopaedia.

Contributor: Sean Dodson, MD

DOI: https://doi.org/10.18791/nsatlas.v1.03.02.12

REFERENCES

Bronen RA, Vives KP, Kim JH, et al. Focal cortical dysplasia of Taylor, balloon cell subtype: MR differentiation from low-grade tumors. *AJNR Am J Neuroradiol* 1997;18:1141–1151.

Colombo N, Tassi L, Galli C, et al. Focal cortical dysplasias: MR imaging, histopathologic, and clinical correlations in surgically treated patients with epilepsy. *AJNR Am J Neuroradiol* 2003;24:724–733.

Rastogi S, Lee C, Salamon N. Neuroimaging in pediatric epilepsy: a multimodality approach. *Radiographics* 2008;28:1079–1095. doi.org/10.1148/rg.284075114