Heterotopic Gray Matter

Last Updated: July 6, 2021

Figure 1: Phase-sensitive (T1-weighted) inversion recovery (top left) and FLAIR (top right) sequences demonstrate a cluster of nodules along the ependymal surface of the posterior horn of the right lateral ventricle.

They have signal characteristics matching gray matter. (Bottom) A T1-weighted image of this patient also demonstrates a band of heterotopic gray matter within the right perirolandic white matter.

Description

 Disrupted migration of neurons from periventricular germinal zone to the cortex

Pathology

- Periventricular nodular type
 - FLNA gene commonly involved on chromosome Xq28
- Band-like heterotopia/lissencephaly
 - Deletion of *LIS1* on chromosome 17p13.3 or *DCX* on chromosome Xq22.3-q23

Clinical Features

- Symptoms
 - o Young child with variable developmental delays and seizures
- Age
 - Severe cases present earlier in life
 - Typically present by the third decade of life
- Gender
 - Male > female
- Males have worse outcomes

Imaging

- General
 - Abnormal gray matter nodules or ribbons within the white matter anywhere from ventricles to cortex
- Modality specific
 - CT and MRI
 - Nonenhancing masses that follow the density or intensity of gray matter on all images

- Imaging recommendations
 - MRI with contrast
- Mimic
 - <u>Low-grade gliomas</u> can have a similar appearance but usually do not match gray matter so closely on all MR sequences.

For more information, please see the corresponding chapter in Radiopaedia.

Contributor: Sean Dodson, MD

DOI: https://doi.org/10.18791/nsatlas.v1.03.02.16

REFERENCES

Barkovich AJ. Morphologic characteristics of subcortical heterotopia: MR imaging study. *AJNR Am J Neuroradiol* 2000;21:290–295.

Barkovic AJ, Kjos BO. Gray matter heterotopias: MR characteristics and correlation with developmental and neurologic manifestations. *Radiology* 1992;182:493–499. doi.org/10.1148/radiology.182.2.1732969

Donkol RH, Moghazy KM, Abolenin A. Assessment of gray matter heterotopia by magnetic resonance imaging. *World J Radiol* 2012;4:90–96. doi.org/10.4329/wjr.v4.i3.90